Attribute Definitions For Individual Data

Version 1.1.0

10 February 2006
1 Introduction

These schema definitions are intended to facilitate information exchange among European, and possibly international, academic and research institutions.

In its current version, the SCHAC schemas are not oriented to any particular technology. They define a set of attributes to describe individuals in the academic and research institutions. An appropriate LDAP profile is included as an appendix of this document. An XML profile will be defined in other document.

These definitions assume that other attributes describing individuals are already available and properly coded, according with the following standards:

- The eduPerson schema v. 200312, as defined at http://www.educause.edu/eduperson/
- The person schema, as defined by X.521 (2001)
- The organizationalPerson schema, as defined by X.521 (2001)
- The inetOrgPerson schema, as defined by RFC 2798

2 Attribute Meta-Information And Notation

For all attributes, the following metadata is defined:

<table>
<thead>
<tr>
<th>Name</th>
<th>A label used to identify and distinguish one attribute from another</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>A short description of the attribute</td>
</tr>
<tr>
<td>Format</td>
<td>The syntax for the representation of the attribute's values</td>
</tr>
</tbody>
</table>
| # of values | • Single Only one value is permitted for describing a given individual
 • Multi An indefinite number of values can be used |
| References | Additional information used to clarify some properties of attributes like format, description or # of values |
| Examples | Example of values used within the attribute |
3 Attribute Classification

The attributes considered in this document are designed to contain information specifically about people. It is helpful to consider this information within broad categories. The ten categories used in this document have been collected from the NMI LocalDomainPerson survey and discussions with the International Schema Archives (Feb, 2004). The categories are:

- Personal Characteristics
- Contact / Local Information
- Student Information
- Employee Information
- Linkage Identifiers / Foreign Keys
- Entry Metadata / Administration Information
- Security Attributes and Keys
- Confidentiality / Attribute Release (Visibility)
- Authorization, Entitlements
- Group-related Attributes

4 Attributes Defined By SCHAC

4.1 Personal Characteristics
Personal characteristics describe the individual person represented by the entry.

4.1.1 schacMotherTongue

<table>
<thead>
<tr>
<th>Name</th>
<th>schacMotherTongue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Is the language a person learns first. Correspondingly, the person is called a native speaker of the language. Usually a child learns the basics of their first language from their family.</td>
</tr>
<tr>
<td>Format</td>
<td>See RFC 3066 Tags for the Identification of Languages</td>
</tr>
<tr>
<td># of values</td>
<td>Single</td>
</tr>
</tbody>
</table>
| References | ● ISO 639 - Language Codes
 ● RFC 2798 - Definition of the inetOrgPerson LDAP Object Class
 ● RFC 3066 - Tags for the Identification of Languages |
| Examples | schacMotherTongue = fr
 schacMotherTongue = es-ES |

4.1.2 schacGender

<table>
<thead>
<tr>
<th>Name</th>
<th>schacGender</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>The state of being male or female. The gender attribute specifies the legal gender of the subject it is associated with. “Either of the two groups that people, animals and plants are divided into according to their function of producing young” (Oxford Advanced Learner’s Dictionary)</td>
</tr>
</tbody>
</table>
| Format | ● 0 Not known
 ● 1 Male
 ● 2 Female
 ● 9 Not specified |
| # of values | Single |
| References | ● RFC 2985 - PKCS #9: Selected Object Classes and Attribute Types Version 2.0. Sections 5.2.6, B.3.10
 ● ISO 5218 - Information interchange -- Representation of human sexes. The standard ISO 5218 defines the representation of the human sexes by a numeric digital code. It was created by the Data Management and Interchange Technical Committee and proposed in November 1976 |
| Examples | schacGender = 2 |
4.1.3 **schacDateOfBirth**

<table>
<thead>
<tr>
<th>Name</th>
<th>schacDateOfBirth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>The date of birth for the subject it is associated with</td>
</tr>
<tr>
<td>Format</td>
<td>Numeric value YYYYMMDD, using 4 digits for year, 2 digits for month and 2 digits for day as described in RFC 3339 'Date and Time on the Internet: Timestamps' as reference using the 'full-date' format from paragraph 5.6 but without the dashes.</td>
</tr>
<tr>
<td># of values</td>
<td>Single</td>
</tr>
</tbody>
</table>
| References | - RFC 2985 - PKCS #9: Selected Object Classes and Attribute Types Version 2.0. Sections 5.2.4, B.3.8
- RFC 3339 - Date and Time on the Internet: Timestamps. 'Date and Time on the Internet: Timestamps' as reference using the 'full-date' format from paragraph 5.6 but without the dashes
- ISO 8601 - Data elements and interchange formats - Information interchange - Representation of dates and times |
| Examples | schacDateOfBirth = 19660412 |

4.1.4 **schacPlaceOfBirth**

<table>
<thead>
<tr>
<th>Name</th>
<th>schacPlaceOfBirth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>The schacPlaceOfBirth attribute specifies the place of birth for the subject it is associated with.</td>
</tr>
<tr>
<td>Format</td>
<td>Free string</td>
</tr>
<tr>
<td># of values</td>
<td>Single</td>
</tr>
<tr>
<td>References</td>
<td>- RFC 2985 - PKCS #9: Selected Object Classes and Attribute Types Version 2.0. Sections 5.2.5, B.3.9</td>
</tr>
<tr>
<td>Examples</td>
<td>schacPlaceOfBirth = Algeciras, Spain</td>
</tr>
</tbody>
</table>

4.1.5 **schacCountryOfCitizenship**

<table>
<thead>
<tr>
<th>Name</th>
<th>schacCountryOfCitizenship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>The schacCountryOfCitizenship attribute specifies the (claimed) countries of citizenship for the subject it is associated with.</td>
</tr>
<tr>
<td>Format</td>
<td>Two-letter country acronym in accordance with ISO 3166.</td>
</tr>
<tr>
<td># of values</td>
<td>Multi</td>
</tr>
</tbody>
</table>
| References | - RFC 2985 - PKCS #9: Selected Object Classes and Attribute Types Version 2.0. Sections 5.2.7, B.3.11
- ISO 3166 - Codes for the representation of names of countries and their subdivisions |
| Examples | schacCountryOfCitizenship = es |
4.1.6 schacSn1

<table>
<thead>
<tr>
<th>Name</th>
<th>schacSn1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>First surname of a person ("the surname" in international terms). schacSn1 would contain whatever values the described person thinks they should contain. Splitting shall be done by humans. That means that, when filling a SCHAC-based description that allows the use of schacSn1 and schacSn2, the administrators must ask for 1st surname and 2nd surname (if applicable) as well as they do for givenName, surname, etc.</td>
</tr>
<tr>
<td>Format</td>
<td>Free string</td>
</tr>
<tr>
<td># of values</td>
<td>Multi</td>
</tr>
</tbody>
</table>

Examples

In Spain, if \(sn = \text{Lopez de la Moraleda y de Las Altas Alcurnias} \) and that person uses Lopez de la Moraleda as the first component of the surname we can write:

\[
\text{schacSn1} = \text{Lopez de la Moraleda}
\]

In Poland, if \(sn = \text{Gorecka-Wolniewicz} \) and we decide to use the national convention for the sn attribute, we can write:

\[
\text{schacSn1} = \text{Wolniewicz}
\]

4.1.7 schacSn2

<table>
<thead>
<tr>
<th>Name</th>
<th>schacSn2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Second surname of a person (how this is assigned is a local matter). schacSn2 would contain whatever values the described person thinks they should contain. Splitting shall be done by humans. That means that, when filling a SCHAC-based description that allows the use of schacSn1 and schacSn2, the administrators must ask for 1st surname and 2nd surname (if applicable) as well as they do for givenName, surname, etc.</td>
</tr>
<tr>
<td>Format</td>
<td>Free string</td>
</tr>
<tr>
<td># of values</td>
<td>Multi</td>
</tr>
</tbody>
</table>

Examples

In Spain, if \(sn = \text{Lopez de la Moraleda y de Las Altas Alcurnias} \) and that person uses de Las Altas Alcurnias as the second component of the surname we can write:

\[
\text{schacSn2} = \text{de Las Altas Alcurnias}
\]

In Poland, if \(sn = \text{Gorecka-Wolniewicz} \) and we decide to use the national convention for the sn attribute, we can write:

\[
\text{schacSn2} = \text{Gorecka}
\]

4.1.8 schacPersonalTitle

<table>
<thead>
<tr>
<th>Name</th>
<th>schacPersonalTitle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>The Personal Title attribute type specifies a personal title or salutation for a person. Examples of personal titles are "Ms", "Dr", "Prof", "Rev", Sr."</td>
</tr>
<tr>
<td>Format</td>
<td>Free format string</td>
</tr>
<tr>
<td># of values</td>
<td>Single</td>
</tr>
</tbody>
</table>

References

- RFC1274 - The COSINE and Internet X.500 Schema personal title
 - Sections 9.3.30

Examples

\[
\text{schacPersonalTitle} = \text{Prof}
\]
4.2 Contact / Location Information

Higher education’s established history of openness and collaboration gives rise to the use of institutional directories as a primary means of locating and contacting potential collaborators and other persons-of-interest at peer institutions.

4.2.1 schacHomeOrganization

<table>
<thead>
<tr>
<th>Name</th>
<th>schacHomeOrganization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Specifies a person’s home organization using the domain name of the organization</td>
</tr>
<tr>
<td>Format</td>
<td>Domain name according to RFC 1035</td>
</tr>
<tr>
<td># of values</td>
<td>Single</td>
</tr>
<tr>
<td>References</td>
<td>RFC 1035 - Domain names - implementation and specification</td>
</tr>
<tr>
<td>Examples</td>
<td>schacHomeOrganization = tut.fi</td>
</tr>
</tbody>
</table>

4.2.2 schacHomeOrganizationType

<table>
<thead>
<tr>
<th>Name</th>
<th>schacHomeOrganizationType</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Type of a Home Organization</td>
</tr>
<tr>
<td>Format</td>
<td>urn:SCHACPREFIX:homeOrgType:<country-code>:<string></td>
</tr>
<tr>
<td></td>
<td>- The <country-code> must be a valid two-letter ISO 3166 country code identifier.</td>
</tr>
<tr>
<td></td>
<td>- <string> from a nationally controlled vocabulary</td>
</tr>
<tr>
<td># of values</td>
<td>Single</td>
</tr>
<tr>
<td>References</td>
<td>ISO 3166 - Codes for the representation of names of countries and their subdivisions</td>
</tr>
<tr>
<td>Examples</td>
<td>schacHomeOrganizationType = urn:SCHACPREFIX:homeOrgType:ch:vho</td>
</tr>
<tr>
<td></td>
<td>schacHomeOrganizationType = urn:SCHACPREFIX:homeOrgType:es:opi</td>
</tr>
</tbody>
</table>

4.2.3 schacCountryOfResidence

<table>
<thead>
<tr>
<th>Name</th>
<th>schacCountryOfResidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>The schacCountryOfResidence attribute specifies the (claimed) country of residence for the subject is associated with.</td>
</tr>
<tr>
<td>Format</td>
<td>Two-letter country acronym in accordance with ISO 3166 country code identifier.</td>
</tr>
<tr>
<td># of values</td>
<td>Multi</td>
</tr>
<tr>
<td>References</td>
<td>RFC 2985 - PKCS #9: Selected Object Classes and Attribute Types Version 2.0. Sections 5.2.8, B.3.12</td>
</tr>
<tr>
<td></td>
<td>ISO 3166 - Codes for the representation of names of countries and their subdivisions</td>
</tr>
<tr>
<td>Examples</td>
<td>schacCountryOfResidence = es</td>
</tr>
</tbody>
</table>
4.2.4 **schacUserPresenceID**

<table>
<thead>
<tr>
<th>Name</th>
<th>schacUserPresenceID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>To store a set of values related to network presence protocols</td>
</tr>
<tr>
<td>Format</td>
<td>urn:SCHACPREFIX:presence:<NSS></td>
</tr>
<tr>
<td>●</td>
<td><NSS> is a Namespace Specific String as defined in RFC 2141</td>
</tr>
<tr>
<td># of values</td>
<td>Multi</td>
</tr>
<tr>
<td>References</td>
<td>● RFC 2141 - URN Syntax</td>
</tr>
<tr>
<td>Examples</td>
<td>schacUserPresenceID = urn:SCHACPREFIX:presence:xmpp:pepe@im.univx.es</td>
</tr>
<tr>
<td></td>
<td>schacUserPresenceID = urn:SCHACPREFIX:presence:sip:pepe@myweb.com</td>
</tr>
<tr>
<td></td>
<td>schacUserPresenceID = urn:SCHACPREFIX:presence:sip:+34-95-505-6600@univx.es;transport=TCP;user=phone</td>
</tr>
<tr>
<td></td>
<td>schacUserPresenceID = urn:SCHACPREFIX:presence:h323:pepe@myweb.fi:808;pars</td>
</tr>
</tbody>
</table>

4.3 Student Information

Student information includes attributes that have relevance to the student role, such as curriculum, major, and degree. No attributes defined.

4.4 Employee Information

Employee information includes attributes that have relevance to the employee role, such as position, office hours, and job title.

4.4.1 **schacPersonalPosition**

<table>
<thead>
<tr>
<th>Name</th>
<th>schacPersonalPosition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>The Personal Position attribute type specifies a personal position inside an institution</td>
</tr>
<tr>
<td>Format</td>
<td>urn:SCHACPREFIX:position:<iNSS></td>
</tr>
<tr>
<td>●</td>
<td><iNSS> is a Namespace Specific String as defined in RFC 2141 but case insensitive</td>
</tr>
<tr>
<td># of values</td>
<td>Multi</td>
</tr>
<tr>
<td>References</td>
<td>● RFC 2141 - URN Syntax</td>
</tr>
<tr>
<td>●</td>
<td>RFC 2256 - A Summary of the X.500(96) User Schema for use with LDAPv3. Section: 5.13 title</td>
</tr>
<tr>
<td></td>
<td>This attribute contains the title, such as "Vice President", of a person in their organizational context. The "personalTitle" attribute would be used for a person's title independent of their job function.</td>
</tr>
<tr>
<td>Examples</td>
<td>schacPersonalPosition = urn:SCHACPREFIX:position:umk.pl:programmer</td>
</tr>
</tbody>
</table>
4.5 Linkage Identifiers / Foreign Keys

Linkage attributes are those identifiers used to link a directory entry with records in external data stores or other directory entries. The use of linkage identifiers can obviate the need to synchronize data elements between systems of record and the enterprise directory. Linkage attributes are also used in the implementation of metadirectory services.

4.5.1 schacPersonalUniqueCode

<table>
<thead>
<tr>
<th>Name</th>
<th>schacPersonalUniqueCode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Specifies a “unique code” for the subject it is associated with. Its value does not necessarily correspond to any identifier outside the scope of the directories using this schema. This might be Student number, Employee number,...</td>
</tr>
<tr>
<td>Format</td>
<td>urn:SCHACPREFIX:publicUniqueID:<country-code>:<iNSS></td>
</tr>
<tr>
<td>●</td>
<td><iNSS> is a Namespace Specific String as defined in RFC 2141 but case insensitive</td>
</tr>
<tr>
<td>●</td>
<td>The <country-code> must be a valid two-letter ISO 3166 country code identifier.</td>
</tr>
<tr>
<td># of values</td>
<td>Multi</td>
</tr>
</tbody>
</table>

4.5.2 schacPersonalUniqueID

<table>
<thead>
<tr>
<th>Name</th>
<th>schacPersonalUniqueID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Specifies a “legal unique identifier” for the subject it is associated with. This might be DNI in Spain, FIC in Finland, NIN in Sweden,...</td>
</tr>
<tr>
<td>Format</td>
<td>urn:SCHACPREFIX:uniqueID:<country-code>:<idType>:<idValue></td>
</tr>
<tr>
<td>●</td>
<td>The <country-code> must be a valid two-letter ISO 3166 country code identifier.</td>
</tr>
<tr>
<td>●</td>
<td><idType>. Acceptable values must be declared per each country code.</td>
</tr>
<tr>
<td>●</td>
<td><idValue></td>
</tr>
<tr>
<td># of values</td>
<td>Multi</td>
</tr>
<tr>
<td>References</td>
<td>● ISO 3166 - Codes for the representation of names of countries and their subdivisions</td>
</tr>
</tbody>
</table>
4.5.3 schacUUID

<table>
<thead>
<tr>
<th>Name</th>
<th>schacUUID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Specifies a "universally unique identifier" for an entity representing a person.</td>
</tr>
<tr>
<td>Format</td>
<td><UUID></td>
</tr>
<tr>
<td></td>
<td>● <UUID>. A UUID is essentially a 16-byte number and in its canonical form a UUID may look like this: f81d4fae-7dec-11d0-a765-00a0c91e6bf6. UUID generation requires no central registration process</td>
</tr>
<tr>
<td># of values</td>
<td>Single</td>
</tr>
<tr>
<td>References</td>
<td>● [draft-zeilenga-ldap-uuid-06.txt] - The LDAP entryUUID operational attribute</td>
</tr>
<tr>
<td>Examples</td>
<td>schacUUID = f81d4fae-7dec-11d0-a765-00a0c91e6bf6</td>
</tr>
</tbody>
</table>

4.6 Entry Metadata / Administration Information

Entry metadata attributes are used to contain information about the entry itself, often its status, birth, and death. Such attributes can be critical to metadirectory processing. While the object classes discussed here were designed to accommodate person entries, metadata attributes can also be useful with non-person entry types such as groups. In such cases the metadata attributes may be best defined in an auxiliary object class independent of the person object class.

4.6.1 schacExpiryDate

<table>
<thead>
<tr>
<th>Name</th>
<th>schacExpiryDate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>The date from which the set of data is to be considered invalid (specifically, in what refers to rights and entitlements)</td>
</tr>
<tr>
<td>Format</td>
<td>Values MUST be expressed Greenwich Mean Time (Zulu) and MUST include seconds (i.e., times are YYYYMMDDhhmmssZ), even where the number of seconds is zero. GeneralizedTime values MUST NOT include fractional seconds.</td>
</tr>
<tr>
<td># of values</td>
<td>Single</td>
</tr>
<tr>
<td>References</td>
<td>● RFC 2630 - Cryptographic Message Syntax. Section 11.3</td>
</tr>
<tr>
<td></td>
<td>● RFC 2985 - PKCS #9: Selected Object Classes and Attribute Types Version 2.0. Sections 5.2.4, B.3.8</td>
</tr>
<tr>
<td></td>
<td>● RFC 3339 - Date and Time on the Internet: Timestamps. 'Date and Time on the Internet: Timestamps' as reference using the 'full-date' format from paragraph 5.6 but without the dashes</td>
</tr>
<tr>
<td></td>
<td>● ISO 8601 - Data elements and interchange formats - Information interchange - Representation of dates and times</td>
</tr>
<tr>
<td>Examples</td>
<td>schacExpiryDate = 20051231125959Z</td>
</tr>
</tbody>
</table>
4.7 Security Attributes and Keys

Security attributes are used to assist in authentication-related activities such as password self-reset. Security attributes that contain sensitive data such as passwords should be carefully protected, highly restricted, and probably encrypted using a one-way hash algorithm such as MD5 or SHA1 so that in the event that the directory server is compromised in an attack the attribute values are not useful to an attacker.

No attributes defined.

4.8 Confidentiality / Attribute Release (Visibility)

Confidentiality attributes are commonly used to indicate whether an entry is visible publicly, visible only to affiliates of the institution, or not visible at all. In some cases only specific attributes, such as phone, address, and email address, are restricted, in other cases all attributes are restricted.

4.8.1 schacUserPrivateAttribute

<table>
<thead>
<tr>
<th>Name</th>
<th>schacUserPrivateAttribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Used to model privacy requirements, as expressed by the user and/or the organizational policies. The values are intended to be attribute type names and applies to the attribute and any subtypes of it for a given entity. In what respects to data exchange, it applies to the expression of privacy requirements. This attribute can also have specific operational semantics (one has already been applied to LDAP servers: see references below), that will be defined in a separate document.</td>
</tr>
<tr>
<td>Format</td>
<td>An attribute type identifier. Operational semantics may imply specific values as wildcards.</td>
</tr>
<tr>
<td># of values</td>
<td>Multi</td>
</tr>
<tr>
<td>Examples</td>
<td>Attributes mail and telephoneNumber are considered private schacUserPrivateAttribute = mail schacUserPrivateAttribute = telephoneNumber</td>
</tr>
</tbody>
</table>

4.9 Authorization, Entitlements

Authorization for services is generally implemented in LDAP directories either through the use of entry attributes or group memberships. (For information regarding LDAP groups please see the MACE Best Practices for Directory Groups document at http://middleware.internet2.edu/dir/groups).

Applications such as Shibboleth (see http://shibboleth.internet2.edu) can make use of entitlement attributes in an entry to provide authorization information to requesting services.
4.9.1 schacUserStatus

<table>
<thead>
<tr>
<th>Name</th>
<th>schacUserStatus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Used to store a set of status of a person as user of services</td>
</tr>
<tr>
<td>Format</td>
<td>urn:SCHACPREFIX:status:<iNSS></td>
</tr>
<tr>
<td></td>
<td>● <iNSS> is a Namespace Specific String as defined in RFC 2141 but case insensitive</td>
</tr>
<tr>
<td># of values</td>
<td>Multi</td>
</tr>
<tr>
<td>References</td>
<td>● RFC 2141 - URN Syntax</td>
</tr>
<tr>
<td></td>
<td>● A parameter in the URN can be used to represent the temporal validity of the status: schacUserStatus = urn:SCHACPREFIX:status:ujl.si:webmail:active?ttl=20060531</td>
</tr>
</tbody>
</table>

4.10 Group-related Attributes

Directory groups are often used to provide authorization to entries and attributes, as well as to restrict or provide access to services. There are benefits to having group memberships described in members’ entries as well as in a group entry. Because not all DSA’s provide this functionality (Microsoft Active Directory and Novell eDirectory do) local attributes are often defined to meet organizational needs. For a complete treatment of issues concerning LDAP groups please see the MACE Best Practices for Directory Groups document at <http://middleware.internet2.edu/dir/groups>

No attributes defined.
A Appendices

A.1 SCHAC LDAP Schema

Definitions of the object class and attribute types specified in this document have been done in accordance with RFC 2252, in an attempt to ease integration with LDAP-accessible Directory systems. Lines have been folded in some cases to improve readability.

A.1.1 Object classes

A.1.1.1 schacPersonalCharacteristics

```
{ schacObjectClass:1
  NAME 'schacPersonalCharacteristics'
  DESC 'Personal characteristics describe the individual person represented by the entry'
  AUXILIARY
  MAY ( schacMotherTongue $ schacGender $ schacDateOfBirth $ schacPlaceOfBirth $ schacCountryOfCitizenship $ schacSn1 $ schacSn2 $ schacPersonalTitle )
}
```

A.1.1.2 schacContactLocation

```
{ schacObjectClass:2
  NAME 'schacContactLocation'
  DESC 'Primary means of locating and contacting potential collaborators and other persons-of-interest at peer institutions'
  AUXILIARY
  MAY ( schacHomeOrganization $ schacHomeOrganizationType $ schacCountryOfResidence $ schacUserPresenceID )
}
```

A.1.1.3 schacEmployeeInfo

```
{ schacObjectClass:3
  NAME 'schacEmployeeInfo'
  DESC 'Employee information includes attributes that have relevance to the employee role, such as position, office hours, and job title'
  AUXILIARY
  MAY ( schacPersonalPosition )
}
```
A.1.4 schacLinkageIdentifiers
{
 schacObjectClass:4
 NAME 'schacLinkageIdentifiers'
 DESC 'Used to link a directory entry with records in external
data stores or other directory entries'
 AUXILIARY
 MAY (
 schacPersonalUniqueCode $ schacPersonalUniqueID $ schacUUID
)
}

A.1.5 schacEntryMetadata
{
 schacObjectClass:5
 NAME 'schacEntryMetadata'
 DESC 'Used to contain information about the entry itself, often
 its status, birth, and death'
 AUXILIARY
 MAY (
 schacExpiryDate
)
}

A.1.6 schacEntryConfidentiality
{
 schacObjectClass:6
 NAME 'schacEntryConfidentiality'
 DESC 'Used to indicate whether an entry is visible publicly,
 visible only to affiliates of the institution, or not
 visible at all'
 AUXILIARY
 MAY (
 schacUserPrivateAttribute
)
}

A.1.7 schacUserEntitlements
{
 schacObjectClass:7
 NAME 'schacUserEntitlements'
 DESC 'Authorization for services'
 AUXILIARY
 MAY (
 schacUserStatus
)
}
A.1.2 Attribute types

A.1.2.1 schacMotherTongue
{
 schacAttributeType:1
 NAME 'schacMotherTongue'
 DESC 'RFC 3066 code for preferred language of communication'
 EQUALITY caseExactMatch
 SINGLE-VALUE
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
}

A.1.2.2 schacGender
{
 schacAttributeType:2
 NAME 'schacGender'
 DESC 'Representation of human sex (see ISO 5218)'
 EQUALITY integerMatch
 SINGLE-VALUE
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
}

A.1.2.3 schacDateOfBirth
{
 schacAttributeType:3
 NAME 'schacDateOfBirth'
 DESC 'Date of birth (format YYYYMMDD, only numeric chars)'
 EQUALITY numericStringMatch
 ORDERING numericStringOrderingMatch
 SUBSTR numericStringSubstringsMatch
 SINGLE-VALUE
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.36
}

A.1.2.4 schacPlaceOfBirth
{
 schacAttributeType:4
 NAME 'schacPlaceOfBirth'
 DESC 'Birth place of a person'
 EQUALITY caseIgnoreMatch
 ORDERING caseIgnoreOrderingMatch
 SUBSTR caseIgnoreSubstringsMatch
 SINGLE-VALUE
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
}

A.1.2.5 schacCountryOfCitizenship
{
 schacAttributeType:5
 NAME 'schacCountryOfCitizenship'
 DESC 'Country of citizenship of a person. Format two-letter acronym according to ISO 3166'
 EQUALITY caseIgnoreMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
A.1.2.6 schacSn1
{
 schacAttributeType: 6
 NAME 'schacSn1'
 DESC 'First surname of a person'
 EQUALITY caseIgnoreMatch
 ORDERING caseIgnoreOrderingMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
}

A.1.2.7 schacSn2
{
 schacAttributeType: 7
 NAME 'schacSn2'
 DESC 'Second surname of a person'
 EQUALITY caseIgnoreMatch
 ORDERING caseIgnoreOrderingMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
}

A.1.2.8 schacPersonalTitle
{
 schacAttributeType: 8
 NAME 'schacPersonalTitle'
 DESC 'RFC1274: personal title'
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
}

A.1.2.9 schacHomeOrganization
{
 schacAttributeType: 9
 NAME 'schacHomeOrganization'
 DESC 'Domain name of the home organization'
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SINGLE-VALUE
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
}

A.1.2.10 schacHomeOrganizationType
{
 schacAttributeType: 10
 NAME 'schacHomeOrganizationType'
 DESC 'Type of the home organization'
 EQUALITY caseIgnoreMatch
 SINGLE-VALUE
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
}
A.1.2.11 schacCountryOfResidence

```
schacAttributeType:11
NAME 'schacCountryOfResidence'
DESC 'Country of citizenship of a person. Format two-letter acronym according to ISO 3166'
EQUALITY caseIgnoreMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
```

A.1.2.12 schacUserPresenceID

```
schacAttributeType:12
NAME 'schacUserPresenceID'
DESC 'Used to store a set of values related to the network presence'
EQUALITY caseExactMatch
SUBSTR caseExactSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
```

A.1.2.13 schacPersonalPosition

```
schacAttributeType:13
NAME 'schacPersonalPosition'
DESC 'Position inside an institution'
EQUALITY caseIgnoreMatch
SUBSTR caseIgnoreSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
```

A.1.2.14 schacPersonalUniqueCode

```
schacAttributeType:14
NAME 'schacPersonalUniqueCode'
DESC 'Unique code for the subject'
EQUALITY caseIgnoreMatch
ORDERING caseIgnoreOrderingMatch
SUBSTR caseIgnoreSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
```

A.1.2.15 schacPersonalUniqueID

```
schacAttributeType:15
NAME 'schacPersonalUniqueID'
DESC 'Unique code for the subject'
EQUALITY caseExactMatch
ORDERING caseExactOrderingMatch
SUBSTR caseExactSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
```
A.1.2.16 SchacUUID

```
{ 
  schacAttributeType: 16
  NAME 'schacUUID'
  DESC 'UUID for the entity'
  EQUALITY uuidMatch
  ORDERING uuidOrderingMatch
  SYNTAX {uuid-IANA-ASSIGNED-OID.1}
}
```

A.1.2.17 SchacExpiryDate

```
{ 
  schacAttributeType: 17
  NAME 'schacExpiryDate'
  DESC 'Date from which the set of data is to be considered invalid (format YYYYMMDDhhmmssZ)'
  EQUALITY generalizedTimeMatch
  ORDERING generalizedTimeOrderingMatch
  SYNTAX 1.3.6.1.4.1.1466.115.121.1.24
}
```

A.1.2.18 SchacUserPrivateAttribute

```
{ 
  schacAttributeType: 18
  NAME 'schacUserPrivateAttribute'
  DESC 'Set of denied access attributes'
  EQUALITY caseIgnoreIA5Match
  SUBSTR caseIgnoreIA5SubstringsMatch
  SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
}
```

A.1.2.19 SchacUserStatus

```
{ 
  schacAttributeType: 19
  NAME 'schacUserStatus'
  DESC 'Used to store a set of status of a person as user of services'
  EQUALITY caseIgnoreMatch
  SUBSTR caseIgnoreSubstringsMatch
  SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
}
```